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Abstract

Modern scientific technology is providing a new class of large-scale simultaneous
inference problems, with hundreds or thousands of hypothesis tests to consider at the
same time. Microarrays epitomize this type of technology but similar problems arise
in proteomics, time of flight spectroscopy, flow cytometry, FMRI imaging, and massive
social science surveys. This paper uses local false discovery rate methods to carry
out size and power calculations on large-scale data sets. An empirical Bayes approach
allows the fdr analysis to proceed from a minimum of frequentist or Bayesian modeling
assumptions. Microarray and simulated data sets are used to illustrate a convenient
estimation methodology whose accuracy can be calculated in closed form. A crucial
part of the methodology is an fdr assessment of “thinned counts”, what the histogram
of test statistics would look like for just the non-null cases.



1. Introduction

Large-scale simultaneous hypothesis testing problems, with hundreds or thousands of
cases considered together, have become a fact of current-day statistical practice. Microarray
methodology spearheaded the production of large-scale data sets, but other “high through-
put” technologies are emerging, including time of flight spectroscopy, proteomic devices, flow
cytometry, and functional Magnetic Resonance Imaging.

Benjamini and Hochberg’s seminal (1995) paper introduced False Discovery Rates (Fdr),
a particularly useful new approach to simultaneous testing. Fdr theory relies on p-values,
that is on null hypothesis tail areas, and as such operates as an extension of traditional
frequentist hypothesis testing to simultaneous inference, whether involving just a few cases
or several thousand. Large-scale situations, however, permit another approach: empirical
Bayes methods can bring Bayesian ideas to bear without the need for strong Bayesian or
frequentist assumptions. Local false discovery rates (fdr), the subject of this paper, use
empirical Bayes techniques to provide both size and power calculations for large-scale studies.

The data for one such study is summarized in Figure 1. Eight microarrays, four from cells
of HIV infected subjects and four from uninfected subjects, have each measured expression
levels for the same N = 7680 genes. Each gene yields a two-sample t-statistic ti comparing
the infected versus the uninfected subjects, which is then transformed to a z-value,

zi = Φ−1(F6(ti)), (1.1)

where F6 is the cumulative distribution function (cdf) of a standard t variable with 6 de-
grees of freedom, and Φ is the standard normal cdf. Theoretically zi should have a N(0, 1)
distribution if gene i produces identically distributed normal expressions for infected and
uninfected cells.

The histogram of z-values shown in Figure 1 looks promising: the normal-shaped central
peak presumably charts the large majority of “null” genes, those behaving similarly for
infected and uninfected cells, while the long tails reveal some interesting “non-null” genes,
the kind the study, was intended to detect; fdr methodology, described in Section 5, has
been used to provide thinned counts, an estimate of what a histogram of only the non-null
z-values would look like.

Figure 2 shows the estimated local false discovery rate curve fdr(z) based on empirical
Bayes methodology discussed in Sections 3 and 4; fdr(z), the conditional probability of a case
being null given z, declines from one near z = 0 to zero at the extremes. There are 186 genes
having fdr(z) ≤ 0.2, a reasonable cutoff point discussed in Section 2, and we might report
these 186 to the investigators as interesting candidates for further study. Other methods,
such as Benjamini and Hochberg’s Fdr procedure with cutoff q = 0.1, yield similar results.

Figure 2 also displays the thinned counts from Figure 1, estimating the histogram of
non-null genes. Strikingly, a majority of the non-null cases lie well within the 0.2 fdr cutoff
limits. However if we try to report more of the non-null cases then false discovery rates
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Figure 1: Histogram of 7680 z-values from an HIV microarray experiment. Short vertical
bars are estimated “thinned counts” of non-null genes, as explained in Section 5. (Extreme
values have been truncated, giving small bars at each end.) Data from van’t Wout et al.
(2003), discussed in Gottardo et al. (2004).

can grow unacceptably large, say to fdr(z) = 0.5, where the investigator would have a 50%
chance of pursuing false leads.

In other words the HIV study is underpowered. Section 5 describes power diagnostics
for large-scale testing situations, based on fdr calculations of the type shown Figure 2.

Section 6 discusses the non-null distribution of z-values such as (1.1). It suggests that
the underlying densities for histograms like Figure 1’s should be smooth normal mixtures,
smoothness being an important assumption of our fdr methodology.

Ideally, a big data set like that of the HIV study should require very little paramet-
ric modeling, the data itself providing the framework for its own analysis. This ideal is
approached by the fdr calculations for Figures 1 and 2, which depend on a simple model,
presented in Section 2, requiring few assumptions. Section 7 examines this model in terms
of a more structured formulation, clarifying its limitations in regard to bias and the choice
of null hypothesis.

Focusing on z-values, rather than working within the full 7680 × 8 data matrix for
the HIV study, greatly reduces the need for modeling assumptions. There will certainly
be situations where working inside the matrix, as in Newton et al. (2004), Gottardo et
al. (2004), and Kerr, Martin, and Churchill (2000), yields more information. Using such
methods requires more careful attention to the details of the individual data set than our
relatively crude z-value approach. A key assumption not made here is independence across
the columns of the data matrix (e.g. independence across microarrays) which underlies the
use of permutation or bootstrap methods for null hypothesis testing distributions. In fact
there turns out to be curious dependences across the HIV matrix, as mentioned in Section
3.2, similar to the correlation effects in the microarray example of Efron (2004); column-wise
independence seems to be a dangerous assumption for microarray studies.

A substantial microarray statistics literature has developed in the past few years, much
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Figure 2: Heavy curve is fdr(z), local false discovery rate as estimated by locfdr algorithm
described in Section 3; fdr(z) = 0.2 at z = −2.34 and 2.17. Vertical bars are thinned counts
from Figure 1, now multiplied by 0.01 and plotted negatively.

of it focused on the control of frequentist Type I errors, see for example Dudoit, van der
Laan and Pollard (2004), and the review article by Dudoit, Shaffer, and Boldruck (2003).
Bayes and empirical Bayes methods have also been advocated, as in Kendziorski et al. (2003),
Johnstone and Silverman (2004), and Newton et al. (2004), while Benjamini and Hochberg’s
Fdr theory is increasingly influential, see Storey et al. (2004), and Genovese and Wasserman
(2004). Local fdr methods, which this article argues can play a useful role, were introduced
in Efron et al. (2001); several references are listed at the end of Section 3.1.

2. False Discovery Rates

Local false discovery rates, Efron et al. (2001), Efron and Tibshirani (2002), are a
variant of Benjamini and Hochberg’s (1995) “tail area” false discovery rates. This section
relates the two ideas, reviews a few basic properties, and presents some general guidelines for
interpreting fdr’s. The development here is theoretical, with practical estimation procedures
deferred to Section 3.

Suppose we have N null hypotheses to consider simultaneously, each with its own test
statistic,

Null hypothesis : H1,H2,...,Hi,...,HN

Test statistic : z1, z2,..., zi,..., zN

(2.1)

N must be large for local fdr calculations, at least in the hundreds, but the zi need not be
independent. A simple Bayesian model, Lee et al. (2000), Newton et al. (2001), Efron et al.
(2001), underlies the theory: we assume that the N cases are divided into two classes, null
or non-null, occurring with prior probabilities p0 or p1 = 1− p0, and with the density of test

3



statistic z depending upon its class,

p0 = Pr{null} f0(z) density if null

p1 = Pr{non-null} f1(z) density if non-null.
(2.2)

In context (1.1) it is natural to take f0(z) to be the standard N(0, 1) density – but see Section
3.2 – and f1(z) some longer-tailed density, perhaps representing a mixture of alternative
possibilities; the empirical estimation theory of Section 3 does not require specification of
f1(z). Practical applications of large-scale testing usually assume a large p0 value, say

p0 ≥ 0.9, (2.3)

the goal being to identify a relatively small set of interesting non-null cases.

Define the null subdensity
f+

0 (z) = p0f0(z) (2.4)

and the mixture density
f(z) = p0f0(z) + p1f1(z). (2.5)

The Bayes posterior probability that a case is null given z, by definition the local false
discovery rate, is

fdr(z) ≡ Pr{null|z} = p0f0(z)/f(z)

= f+
0 (z)/f(z).

(2.6)

The Benjamini-Hochberg false discovery rate theory relies on tail areas rather than
densities. Letting F0(z) and F1(z) be the cdf’s corresponding to f0(z) and f1(z) in (2.2),
define F+

0 (z) = p0F0(z) and F (z) = p0F0(z) + p1F1(z). Then the posterior probability of a
case being null given that its z-value “Z” is less than some value z is

Fdr(z) ≡ Pr{null|Z ≤ z} = F+
0 (z)/F (z). (2.7)

(It is notationally convenient to consider events Z ≤ z but we could just as well consider tail
areas to the right, two-tailed events, etc.) Figure 3 illustrates the geometrical relationship
between Fdr and fdr.

Benjamini and Hochberg’s FDR control rule depends on an estimated version of (2.6)
where F is replaced by the empirical cdf. Storey (2002) and Efron and Tibshirani (2002)
discuss the connection of the frequentist FDR procedure with Bayesian form (2.7). Fdr(z)
corresponds to Storey’s “q-value”, the value of the tail area false discovery rate attained at
a given observed value Z = z.

Fdr and fdr are analytically related by

Fdr(z) =

∫ z

−∞
fdr(Z)f(Z)dZ/

∫ z

−∞
f(Z)dZ

= Ef{fdr(Z)|Z ≤ z},
(2.8)
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Figure 3: Geometrical relationship of Fdr to fdr; heavy curve plots F+
0 (z) versus F (z);

fdr(z) is slope of tangent, Fdr(z) slope of secant.

“Ef” indicating expectations with respect to f(z), Efron and Tibshirani (2002). That is,
Fdr(z) is the average of fdr(Z) for Z ≤ z; Fdr(z) will be less than fdr(z) in the usual situation
where fdr(z) decreases as |z| gets large. For example fdr(−2.34) = 0.20 in Figure 2 while
Fdr(−2.34) = 0.12. If the cdf’s F0(z) and F1(z) are Lehmann alternatives

F1(z) = F0(z)α, [α < 1], (2.9)

it is straightforward to show that

log

{
fdr(z)

1 − fdr(z)

}
= log

{
Fdr(z)

1 − Fdr(z)

}
+ log

(
1

α

)
, (2.10)

giving
fdr(z) =̇ Fdr(z)/α (2.11)

for small values of Fdr. The HIV data of Figure 1 has α roughly 1/2 in the left tail and 1/3
in the right.

The local nature of fdr(z) is an advantage in interpreting results for individual cases.
For example, a gene with z = 2.0 in the HIV study has an estimated fdr of 0.30 while the
corresponding (right-sided) tail-area Fdr, the q-value, is 0.12. Quoting just this last number
gives an overoptimistic impression of the gene’s significance. In practice the methods can
be combined, using the Benjamini-Hochberg algorithm to identify non-null cases, say with
q = 0.10, but also providing individual fdr values for those cases.

The literature has not reached consensus on a standard choice of q for Benjamini-
Hochberg testing, the equivalent of .05 for single tests, but Bayesian calculations offer some
insight. The cutoff threshold fdr ≤ 0.20 used in Figure 2 yields posterior odds ratio

Pr{non-null|z}/Pr{null|z} = (1 − fdr(z))/fdr(z)

= p1f1(z)/p0f0(z) ≥ 0.8/0.2 = 4.
(2.12)
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If we assume prior odds ratio p1/p0 ≤ 0.1/0.9 as in (2.3), then (2.12) corresponds to Bayes
factor

f1(z)/f0(z) ≥ 36 (2.13)

in favor of non-null.

This threshold requires a much stronger level of evidence against the null hypothesis
then in standard one-at-a-time testing. For instance suppose we observe x ∼ N(µ, 1) and
wish to test H0 : µ = 0 vs µ = 2.80, a familiar scenario for power calculations since
rejecting H0 for x ≥ 1.96 yields two-sided size 0.05 and power 0.80. Here the critical
Bayes factor is only f2.80(1.96)/f0(1.96) = 4.80. (A value closer to 3 is suggested by the
more careful considerations in Efron and Gous (2001).) We might justify (2.13) as being
conservative in guarding against multiple testing fallacies. More pragmatically, increasing the
fdr threshold much above 0.20 can deliver unacceptably high proportions of false discoveries
to the investigators. The 0.20 threshold, used in the remainder of the paper, corresponds to
q-values between 0.05 and 0.15 for reasonable choices of α in (2.11); such q-value thresholds
can be interpreted as reflecting a conservative Bayes factor for Fdr interpretation.

Any choice of threshold is liable to leave investigators complaining that the statisticians’
list of non-null cases omits some of their a priori favorites. Conveying the full list of values
fdr(zi), not just those for cases judged non-null, allows investigators to employ their own
prior opinions on interpreting significance. This is particularly important for low-powered
situations like the HIV study, where luck plays a big role in any one case’s results, but it is
the counsel of perfection, and most investigators will require some sort of reduced list.

False discovery rates, both fdr and Fdr, depend on only the marginal distribution of
the z values, f(z) or F (z). This has both good and bad consequences: On the good side,
independence is not required of the zi’s in (2.1), since all that is needed is a reasonable
estimate of their marginal distribution. Less happily, results like (2.6) or (2.7) are really
“one-at-a-time” Bayes inferences, that may be quite different than the (usually unknowable)
posterior probability of Hi given the entire N -vector z.

3. Estimating fdr

The heavy curve in Figure 2 is an estimate of the local false discovery rate fdr(z) for
the HIV study. This section concerns the estimate’s empirical Bayes methodology, including
the question of choosing an appropriate null hypothesis. Accuracy of the estimation pro-
cedure is taken up in Section 4. (This methodology is available through algorithm locfdr,
Comprehensive R Archive Network, http://cran.r-project.org.) Estimating the numerator
and denominator of fdr(z) = f+

0 (z)/f(z) will be discussed separately.

3.1 Estimating the Mixture Density f(z)

Nonparametric density estimation has a reputation for difficulty, well-deserved in general
situations. However there are good theoretical reasons for believing that z-value distributions
are quite smooth, see Section 6. Our tactic here is to estimate the mixture density f(z),
the denominator of fdr(z) in (2.6), with smooth but flexible parametric models. Section 4
discusses the accuracy of this approach.

Lindsey’s method, as discussed in Section 2 of Efron and Tibshirani (1996), permits effi-
cient and flexible parametric density estimation using standard Poisson regression software.
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Suppose the N z-values have been binned, giving bin counts y1, y2, . . . yK summing to N .
The histogram in Figure 2, used K = 79 bins, each of width ∆ = 0.1. Lindsey’s method
takes the yk to be independent Poisson counts,

yk
ind∼Po(νk) k = 1, 2, . . . , K, (3.1)

with νk proportioned to density f(z) at midpoint “z(k)” of the kth bin, approximately

νk = N∆f(z(k)). (3.2)

Modeling log(νk) as a pth degree polynomial function of z(k) makes (3.1), (3.2) a standard
Poisson general linear model (GLM). The choice p = 7, for example, effectively amounts to
estimating f(z) by maximum likelihood within the seven-parameter exponential family

f(z) = exp

{
7∑

j=0

βjz
j

}
(3.3)

(with (β1, β2, . . . , β7) determining β0 from the requirement that f(z) integrate to one.) The

denominator of f̂dr(z) in Figure 2 actually took log{f(z)} to be a natural spline function
with seven degrees of freedom, but (3.3) gives nearly the same answers; standard Poisson
deviance analysis showed a reasonably good fit, while doubling or halving the bin width ∆
had little effect.

Dependence among the zi’s causes overdispersion and dependence for the yk’s in (3.1),
but has little effect on (3.2). Lindsey’s method remains nearly unbiased, but, as discussed
in Section 4, the usual GLM accuracy estimates are liable to be overoptimistic.

A variety of other local fdr estimation methods have been suggested: using more specific
parametric models such as normal mixtures, see Pan et al. (2003), Pounds and Morris (2003),
Allison et al. (2002), or Heller and Qin (2003); isotonic regression, Broberg (2005); local
smoothing, Aubert et al. (2004); and hierarchical Bayes analyses, Liao et al. (2004), Do
et al. (2004). All seem to perform reasonably well. The Poisson GLM methodology of
this paper has the advantage of easy implementation with familiar software, and permits a
closed-form error analysis as shown in Section 4. Perhaps most usefully, it transfers density
estimation to the more familiar realm of regression theory.

3.2 Estimating f+
0 (z)

The fdr numerator f+
0 (z) = p0f0(z), (2.4), is more challenging to estimate. We consider

two situations: where the theoretical null f0(z) that would ordinarily be used for the indi-
vidual hypothesis testing problems, e.g. f0(z) ∼ N(0, 1) in (1.1), is deemed satisfactory for
the simultaneous problem (2.1); and where it is unsatisfactory, and instead we must fit an
empirical null, as in Efron (2004). The HIV study falls into the “unsatisfactory” category,
and we begin by using it to illustrate empirical estimation of f+

0 (z).

The heavy curve in Figure 4 is log f̂(z), the log of the estimated mixture density fit to

the HIV counts by Poisson regression. A quadratic curve, dashed, has been fit to log f̂(z)

around z = 0, and this is log f̂+
0 (z), the empirical estimate of log f+

0 . The three coefficients of
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the fitted quadratic determine f̂+
0 (z) as a scaled normal density, in this case with p̂0 = 0.917

and f̂0 ∼ N(−0.10, 0.742),

f̂0(z) = .917 · ϕ−.10,.74(z)

[
ϕδ,σ(z) = exp

{
− 1

2

(
z − δ

σ

)2}/√
2πσ2

]
. (3.4)

The default option in locfdr fits a quadratic to log f̂(z) by ordinary least squares applied
over the central one-third range of the z-values.

Figure 4: Empirical estimation of the fdr numerator f+
0 (z) = p0f0(z), HIV study. Heavy

curve is log of Poisson regression estimate f̂(z) for mixture density; dashed curve is log f̂+
0 (z),

best-fitting quadratic to log f̂(z) near z = 0; estimates p̂0 = 0.917, f̂0 ∼ N(−0.10, 0.742).

Dotted curve is log f̂+
0 for theoretical null.

The logic here is quite simple: we make the “zero assumption” that the central peak
of Figure 1’s histogram consists mainly of null cases, and choose p0, δ and σ in (3.4) to
quadratically approximate the histogram counts near z = 0. This same argument can be
applied with the theoretical null, giving the dotted curve in Figure 4. Now f0(z) is assumed
to be ϕ0,1(z), the standard normal, so only p0 in f+

0 = p0f0 remains to be estimated from
the central histogram counts.

The two-class model (2.2) is unidentifiable without restrictions on the form of f0 and
f1. Some version of the zero assumption is necessary in the absence of strong parametric
assumptions, see for example Section 3 of Storey (2002). (Most of the FDR literature works
with p-values rather than z-values, pi = F6(ti) in (1.1), in which case the “zero region” occurs
near p = 1.) The zero assumption is more believable when p0, the proportion of null cases, is
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near 1. Efron (2004), Section 5, shows that if p0 exceeds 0.90, the fitting method of Figure 4
will have negligible bias: although the 10% or less of non-null cases might in fact contribute
some counts near z = 0, these cannot substantially affect the estimates of δ and σ in (3.4).
The estimate of p0 is affected, being upwardly biased as seen in Section 4 and discussed in
Section 7.

The theoretical null hypothesis f0 ∼ N(0, 1) is untenable for the HIV data. If it were
valid then f(z) should be at least as wide as f0 near z = 0, assuming that non-null z’s are
more dispersed than nulls. Instead f is substantially narrower, forcing f+

0 = p0f0 to take
the impossible value p̂0 = 1.15 in order to match the histogram heights near z = 0.

The examples in Efron (2004) go the other way: in both of them the empirical null is
substantially wider than N(0, 1). Various causes of overdispersion are suggested, including
hidden correlations and unobserved covariates. The underdispersion here is harder to explain,
but can be traced to a correlation of expression levels across microarrays: levels on the odd-
numbered arrays were positively correlated, as were levels among the even-numbered arrays,
the effect cutting across the Treatment-Control classification, a pattern that swelled the
denominators of the t-statistics (1.1).

Misspecification of the null hypothesis, which becomes visible in large-scale testing sit-
uations, undermines all forms of simultaneous inference, fdr, Fdr, Bonferroni, Family-Wise
Error Rate, or the sophisticated resampling based algorithms of Westfall and Young (1993).
Using an empirical null avoids the problem, but at a substantial cost in estimation efficiency
as shown in Section 4. Other methods are sometimes available for empirical null estimation,
involving “housekeeper genes” (cases known a priori to be null) and designed replications,
as in Lee et al. (2000).

More ambitiously, one may try to model the full error structure of the original data set,
a 7680 × 8 matrix in the HIV study, using frequentist or Bayesian modeling as in Kerr and
Churchill (2001), or Newton et al. (2004). When feasible this is the ideal approach but it
can be an heroic undertaking in the complicated venue of microarray analysis. The approach
here, relying only on the observed distribution of the z-values, trades some loss of efficiency
for fewer assumptions and simple application.

Permutation and bootstrap null density estimates play a major role in the microarray
literature, as in Tusher et al. (2001) and Pollard and van der Laan (2003). These should
be considered as improved versions of the theoretical null rather than empirical nulls. The
permutation null for the HIV data, permuting the eight microarrays, is about N(0, .992).

Figure 4’s quadratic construction assumes that f0 is normal, but uses the data to estimate
its mean and variance instead of accepting the theoretical choice N(0, 1). Under some
circumstances we might wish to go further, perhaps adding a cubic term to log f0; locfdr
includes such an option, described in Section 7.

The basic false discovery rate idea is appealingly simple: 19 of the HIV z-values fell
into bin [2.0, 2.1] in Figure 1, the smoothed estimate from f̂ being 19.95; this compares with

expected number 4.70 under f̂+
0 , yielding estimated local false discovery rate 4.70/19.95 =

0.24. If we report this bin as containing interesting cases, then about one-fourth of them
will turn out to be false discoveries. The question of the accuracy of this estimate is taken
up next.
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4. Estimation Accuracy

The algorithm described in 3.2 produces an estimate f̂dr(z) for the local fdr from z-values
z1, z2, . . . , zN . How accurate is the estimate? This section derives a delta-method formula
for the standard error of log(f̂dr(z)), under the assumption that the z’s are independent.
The formula is useful for understanding the relative efficiency of local fdr compared to tail
area Fdr, for assessing components of variation caused by the three f̂dr components, p̂0, f̂0,
and f̂ , and as a lower bound and rough guide to estimation accuracy even if independence
is doubtful.

Before deriving the formula we report on a small simulation study where

zi
ind∼N(µi, 1) with

{
µi = 0 probability 0.90

µi ∼ N(3, 1) probability 0.10,
(4.1)

for i = 1, 2, . . . , N . Three choices of N were used, N = 500, 1500, 4500, with 250 simulations
each; for example the N = 1500 choice had 1350 µi’s equaling 0 and 150 exactly following
N(3, 1). The table reports standard deviations for log{f̂dr(z)}, and for the tail area quantity

log{F̂dr(z)}, obtained by integrating the parametric estimates f̂ and f̂+
0 to get F̂ and F̂+

0

for insertion into (2.7).

The most striking fact in Table 1 is the high cost of using an empirical null, a factor of 3
increase in standard deviation in the critical interval [2.5, 3.5] for z where fdr(z) ranges from

0.45 down to 0.05. The local-tail area comparison is much less dramatic: f̂dr is about 50%
more variable than F̂dr when using the theoretical null, but correspondingly less variable
with the empirical null.

In practical terms a log standard deviation less than 0.25 will usually be tolerable,
corresponding to estimates between 0.15 and 0.25 for a true 0.20 false discovery rate. All
the entries based on the theoretical null are less than 0.25, and this would hold for smaller
sample sizes as well since the standard deviations are approximately proportional to 1/

√
N .

The empirical null standard deviations are too big for comfort at N = 500 and only
borderline acceptable at N = 1500. Of course we would prefer to use the theoretical null
but, unfortunately, it does not fit the data in situations like the HIV study or the examples of
Efron (2004), where inferences based on the theoretical null are dangerously misleading. One
tactic is to reduce empirical variability, at the risk of bias, by using less flexible parametric
models. Decreasing the degrees of freedom for the natural spline estimate of f(z) from 7 to

5 reduced the standard deviations for log(f̂dr) by about one-third.

Table 1’s standard errors for the tail area false discovery rates F̂dr(z), i.e. for q-values,

are based on the same parametric models as f̂dr(z). Replacing the parametric cdf estimate

F̂ with the nonparametric empirical cdf F̄ increased the standard errors in Table 1 by
several percent, worsening an already bad situation for the empirical null. Benjamini and
Hochberg’s (1995) Fdr-controlling algorithm depends on F̄ (as well as independence); there

the high variability of F̂dr does not affect the claimed control rates, but does reduce the
power of the procedure to identify non-null cases. Power is considered here in Section 5.

Poisson GLM calculations provide convenient approximation formulas for stdev(log f̂dr)

and stdev(log F̂dr). Let X be the K × m structure matrix used for estimating log(f) in

10



Section 3.1; X has m = 8, kth row (1, z(k), z
2
(k), . . . , z7

(k)) in model (3.3). Also let X0 be the

K ×m0 matrix used to describe log(f+
0 ) in Section 3.2: X0 has kth row (1, z(k), z

2
(k)) for the

empirical null, m0 = 3, while X0 is the K × 1 matrix (1, 1, . . . , 1)′ for the theoretical null.

Locfdr fits log f̂+
0 (z) to log f̂(z) over a central subset of K0 bins, with index set say “i0”,

defining submatrices with rows in i0,

X̃ = X[i0, ] and X̃0 = X0[i0, ] (4.2)

of dimensions K0 × m and K0 × m0. Also define inner product matrices

Ĝ = X ′ diag (ν̂)X and G̃0 = X̃ ′
0X̃0, (4.3)

where diag (ν̂) is the K × K diagonal matrix having diagonal elements ν̂k = N∆f̂(z(k)) as
in (3.2).

Finally, let �̂ indicate the K-vector with elements �̂k = log f̂(z(k)), likewise �̂+
0 for vector

(log f̂+
0 (z(k))) and �̂fdrk for log f̂dr(z(k)).

Lemma 1 The K × K derivative matrix of log f̂dr with respect to the bin counts is(
d �fdrk

dy�

)
= AĜ−1X ′, (4.4)

where
A = X0G̃

−1
0 X̃ ′

0X̃ − X. (4.5)

Proof A small change dy in the count vector (considered as continuous) produces change

d�̂ in �̂,
d�̂ = XĜ−1X ′dy. (4.6)

Similarly if �̂+
0 = X0γ̂, γ̂ a m0-vector, is fit by least squares to �̃ = �̂[i0], we have

dγ̂ = G̃−1
0 X̃ ′

0d�̃ and d�̂+
0 = X0G̃

−1
0 X̃ ′

0d�̃. (4.7)

Both (4.6) and (4.7) are standard regression results. Then (4.6) gives d�̃ = d�̂[i0] =

X̃Ĝ−1X ′dy, yielding
d�̂+

0 = X0G̃
−1
0 X̃ ′

0X̃Ĝ−1X ′dy (4.8)

from (4.7). Finally,

d(�̂fdr) = d(�̂+
0 − �̂) = (X0Ĝ

−1
0 X̃ ′

0X̃ − X)Ĝ−1X ′dy, (4.9)

verifying (4.4). �
The delta-method estimate of covariance for the K-vector �̂fdr is derived from the lemma

as
ĉov(�̂fdr) = (AĜ−1X ′)ĉov(y)(AĜ−1X ′)′

= (AĜ−1X ′)diag(ν̂)(AĜ−1X ′)′,
(4.10)
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under Poisson assumptions (3.1), (3.2). Since Ĝ = X ′ diag (ν̂)X this reduces to a relatively
simple formula:

Theorem The delta-method estimate of covariance for the vector of log f̂dr(z(k)) values is

ĉov(̂�fdr) = AĜ−1A (4.11)

with A as in (4.5).

The entries “form” in Table 1 are square roots of diagonal elements of ĉov in (4.11), av-
eraged over the 250 simulations. They produced reasonable estimates of the actual standard
deviations of log (f̂dr), especially for the empirical null.

A formula similar to (4.11) exists for the tail area false discovery rates �̂Fdrk = log F̂dr(z(k)),

ĉov(�̂Fdr) = BĜ−1B′, (4.12)

B = Ŝ0X0G̃
−1
0 X̃ ′

0X̃ − ŜX, (4.13)

where, for the case of left-tail F̂dr’s, Ŝ0 and Ŝ are lower triangular matrices,

Ŝk� =
f̂�

F̂k

and Ŝ0k� =
f̂0�

F̂0k

for � ≤ k. (4.14)

Comparisons of (4.11) with (4.12) in various situations confirm the general story of Table

1: f̂dr is somewhat more variable than F̂dr when using theoretical nulls, the opposite being
true for empirical nulls; however both methods are much more variable in the empirical case,
this effect dwarfing their comparative differences. (Empirical nulls fare better in the power
calculations of Section 5.)

Table 2 displays means and standard deviations in simulation (4.1) for the three esti-
mated parameters of the empirical null, p0, δ, and σ, (3.4). Notice that p̂0 is biased upward

from the simulation value p0 = 0.90. This makes little difference to f̂dr(z) = p̂0f̂0(z)/f̂(z),
only increasing it by factor .0924/0.90 = 1.03. (The power calculations of Section 5 are more
sensitive to bias.) Upward bias arises from the zero assumption: the µ ∼ N(3, 1) compo-
nent of (4.1) gives z ∼ N(3, 2), resulting in a small proportion of non-null z-values near 0.
However the “bias” here reflects, at least partly, an ambiguity in what p0 actually means, as
discussed in Section 7.

The variability in the estimated mean and standard deviation of the empirical null, δ̂
and σ̂, has an order of magnitude bigger effect than p̂0 on f̂dr and F̂dr. The theoretical null
“knows” that (δ, σ) = (0, 1), eliminating this variability and accounting for its much smaller
standard deviations.

For fixed z, log f̂dr(z) is a sum of three terms,

log f̂dr(z) = log p̂0 + log f̂0(z) − log f̂(z), (4.15)

allowing an exact apportionment of variability of log f̂dr(z) to the three components. For the
empirical null with N = 1500 and z = 2.9 (the point where fdr(z) = 0.20 in model (4.1)) the

12



THEORETICAL NULL EMPIRICAL NULL

z ave(f̂dr) local (form) tail local (form) tail

N = 500
1.5 .95 .08 (.09) .09 .06 (.07) .17
2.0 .77 .15 (.15) .08 .17 (.17) .27
2.5 .45 .17 (.18) .08 .28 (.28) .40
3.0 .17 .15 (.18) .10 .45 (.45) .56
3.5 .05 .18 (.24) .12 .68 (.67) .72
4.0 .01 .20 (.27) .16 .89 (.90) .90

N = 1500
1.5 .96 .05 (.05) .05 .04 (.04) .10
2.0 .76 .08 (.09) .05 .09 (.10) .15
2.5 .44 .09 (.10) .05 .16 (.16) .23
3.0 .16 .08 (.10) .06 .25 (.25) .32
3.5 .04 .10 (.13) .07 .38 (.38) .42
4.0 .01 .11 (.15) .10 .50 (.51) .52

N = 4500
1.5 .96 .03 (.03) .03 .02 (.02) .05
2.0 .77 .05 (.05) .03 .05 (.06) .08
2.5 .43 .06 (.06) .03 .09 (.09) .12
3.0 .16 .05 (.06) .03 .14 (.14) .18
3.5 .04 .06 (.08) .04 .21 (.22) .23
4.0 .01 .06 (.09) .05 .28 (.29) .29

Table 1: Accuracy comparison for local and tail area false discovery rates, simulation
study (4.1); boldface stdev(log f̂dr), ”local”, and stdev (log F̂dr), ”tail”; ”form” from formula

(4.11), delta-method approximation for stdev(log f̂dr). Second column shows average f̂dr(z)
over the 250 simulations. Simulations used natural spline bases, seven degrees of freedom,
for estimating f(z).

p0 δ σ p
(theo)
0

N = 500: .924 (.020) .021 (.078) 1.018 (.056) .917 (.023)
N = 1500: .924 (.011) .023 (.046) 1.020 (.031) .915 (.015)

[form]: [.013] [.049] [.032] [.015]
N = 4500: .922 (.006) .024 (.026) 1.017 (.018) .915 (.007)

Table 2: Means and standard deviations (parentheses) for estimated empirical null pa-
rameters p0, δ, σ, (3.4); simulation study (4.1). Last column for theoretical null p0 estimates.
Bracketed numbers from formulas (4.17)-(4.18), N = 1500.
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term log f̂0(z) is completely dominant: even knowing the true value of p0 and f(z) would

reduce the standard deviation of log f̂dr(z) by less than 1%. Employing a theoretical null

assumes away variability in log f̂0(z). Now the log f̂(z) term dominates variance: knowing

p0 exactly reduces sd(log f̂dr(z)) by only 9%.

Standard error formulas are available for the trio of empirical null parameter estimates
θ̂ ≡ (log p̂0, δ̂, σ̂) obtained as in Figure 4. Defining

D =

1 δ̂ σ̂2 + δ̂2

0 σ̂2 2δ̂ σ̂2

0 0 σ̂3

 G̃−1
0 X̃ ′

0X̃ (4.16)

in the notation of (4.2)-(4.9), the delta method covariance matrix is

ĉov(θ̂) = DĜ−1D′ −

 1
N

0 0
0 0 0
0 0 0

 , (4.17)

this following after some calculation from dγ̂ in (4.7). Applied to the simulations for N =
1500, (4.16) gave average standard errors “form” in Table 2, close to the empirical values;
variation was moderate across trials, coefficients of variation 13%, 6%, and 8% respectively.

Simpler calculations provide a delta-method formula for the variance of log(p̂0) when
using the theoretical null, also shown in Table 2,

v̂ar{log p̂0} = x̄−1
0 Ĝ−1x̄′

0 −
1

N
, (4.18)

where x̄0 is the column-wise average of X̃0.

For the HIV study, formula (4.17) yielded standard errors (.0087, .014, .014) for the

empirical null estimates (p̂0, δ̂, σ̂) = (0.917,−0.10, 0.735). The objection here is that zi’s are
likely to be correlated in a microarray study, which would usually increase cov(y) above the
Poisson estimate diag(ν̂) used in (4.10). (“Correlated” refers to the random errors in the

expression readings, not the fact that genes have related functions; if for example zi
ind∼N(µi, 1)

as in (4.1), then it is easy to show that cov(y) will be smaller than diag(ν), even if the µi’s
for related genes tend toward similar values.)

Other methods of microarray error assessment, not requiring independence, may be
available: resampling microarrays instead of genes (the latter giving almost the same results
as (4.11) or (4.17)); blocking genes into groups suspected to be intracorrelated, and then
bootstrapping or jackknifing with the groups as units; decomposing the gene-microarray data
matrix into some form of random effects model that can then be resampled to give presum-
ably more dependable standard error estimates. The HIV study, with its small number of
microarrays and uncertain correlation structure sprawling across both genes and arrays, is
not a promising candidate for these methods. The independence-based results of this section
are useful even when not definitive, serving as lower bounds on variability for microarray
analysis; locfdr returns standard errors from (4.11) along with f̂dr(z).
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5. Power Diagnostics

The microarray statistics literature has focussed on controlling Type I error, false rejec-
tion of genuinely null cases. Dudoit et al. (2003) provides a good review. Local fdr methods
can also help assess power, the probability of rejecting genuinely non-null cases. This section
discusses power diagnostics based on f̂dr(z), showing for example why the HIV study might
easily fail to identify important genes. The emphasis here is on diagnostic statistics that are
dependable and simple to calculate.

The Null subdensity

f+
1 (z) = p1f1(z) = (1 − fdr(z))f(z), (5.1)

the last equality following from (2.5)-(2.6), plays a central role in power calculations. Inte-
grating f+

1 (z) yields the non-null proportion p1 = 1 − p0.

p1 =

∫ ∞

−∞
f+

1 (z)dz =

∫ ∞

−∞
(1 − fdr(z))f(z)dz, (5.2)

so that

f1(z) = (1 − fdr(z))f(z)/

∫ ∞

−∞
(1 − fdr(z′))f(z′)dz′. (5.3)

Power diagnostics are obtained by comparing f1(z) with fdr(z). We hope to see f1(z) sup-
ported in regions having low values of fdr(z).

The fdr methodology of Section 3 provides a useful estimate of f1. Returning to notation
(3.1), (3.2), with counts yk in K bins of width ∆ and midpoints z(k), let f̂k = f̂(z(k)) and

f̂drk = f̂dr(z(k)), where f̂ and f̂dr are obtained as in Section 3. Substituting into (5.2), (5.3)
gives estimates

p̂1 =
K∑

k=1

(1 − f̂drk)f̂k = 1 − p̂0 (5.4)

and
f̂1k ≡ f̂1(z(k)) = (1 − f̂drk)f̂k/p̂1, (5.5)

The latter is shown as the heavy curve in Figure 5. It is similar to “f1” in Figure 2 of Efron
et al. (2001) (though now based on a more stable estimation methodology), where the goal
was to choose, from a class of modified student t formulas, summary statistics “zi” that
maximized the number of genes having f̂dr ≤ 0.10. Here the form of the summary statistic
is assumed given, as in (1.1), the goal being to assess the power of the resulting analysis.

Power diagnostics are obtained from the comparison of f̂1(z) with f̂dr(z). The expecta-

tion of f̂dr under f1, say Êfdr1, provides a particularly simple diagnostic,

Êfdr =
K∑

k=1

f̂drkf̂1k

=
K∑

k=1

f̂drk(1 − f̂drk)f̂k/
K∑

k=1

(1 − f̂drk)f̂k,

(5.6)
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Figure 5: Heavy curve proportional to non-null density estimate f̂1(z), (5.5), for HIV

study; light curve proportional to f̂dr(z). Points are thinned counts (5.9); a regression curve,
dotted, has been fit directly to the thinned counts on the right.

the expected non-null false discovery rate. A small value of Êfdr1, suggests good power, with
a typical non-null case likely to show up on a list of interesting candidates for further study.

Table 3 shows Êfdr1’s behavior in simulation (4.1), N = 1500. The situation is seen to be

favorable, with Êfdr1, averaging only 0.23 or 0.29 using empirical or theoretical nulls (Section

7 explains the disparity between the two Êfdr1 values). Moreover the individual Êfdr1 values
were reasonably stable, having standard deviations only 0.04 or 0.06. The empirical null
performs well here, in contrast to Table 3.

empirical null theoretical null

p̂1 Êfdr1 p̂1 Êfdr1

mean: 0.76 .232 .085 .285
stdev: .011 .040 .015 .060

coeffvar: .14 .17 .18 .21

Table 3: Means, standard deviations, and coefficients of variation of p̂1 and Êfdr1 for
N = 1500 case of Tables 1 and 2.

On the other hand, Êfdr1 equals 0.45 for the HIV study (by necessity using the empirical
null) so a typical non-null gene is likely to receive a substantial fdr estimate, high enough to

exclude it from the list of those having f̂dr ≤ 0.20.
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The Efdr1, computations can be carried out separately to the left and right of z = 0
by appropriately restricting the range of summation in the numerator and denominator of
(5.6). Doing so gives Êfdrleft = 0.51 and Êfdrright = 0.35 for the HIV data. This says that it
will be particularly difficult to detect genes that underexpress in HIV-positive subjects.

Other moments or probabilities of f̂dr with respect to f̂1 are as simple to calculate as
Êfdr1, for example the standard deviation

Ŝd1 =

[
K∑

k=1

f̂dr
2

k · f1k − Êfdr
2

1

]1/2

, (5.7)

which equals 0.30 for the HIV data. The possibility of dependence among the zi’s does not
bias estimates such as (5.6) or (5.7), though it increases their variability.

Going further, we can examine the entire distribution of f̂dr under f̂1. The heavy curve
in Figure 6 shows the f̂1 cdf of f̂dr for the HIV study,

Ĝ(x) =
∑
ˆfdrk≤x

f̂1k

/ K∑
k=1

f̂1k. (5.8)

Figure 6: Empirical cdf of f̂dr with respect to estimated non-null density f̂1. Heavy curve
HIV study; Light curve first simulated sample (4.1), N = 1500. The simulated sample

displays greater power. Êfdr1, equals 0.45 for HIV study, 0.23 for simulation.

For instance Ĝ(.2) = 0.27, so only 27% of the non-null cases are estimated to have fdr values
less than 0.20. By contrast, the first of the N = 1500 simulated data sets from Table 1 is
seen to have much greater power, with Ĝ(.2) = 0.64.
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The limitations of the HIV study are forcefully illustrated by Figure 6: if we wish to
report 50% of the non-null cases then we must tolerate f̂dr values as high as 0.45 = Ĝ−1(.5),
etc.

The thinned counts appearing in Figures 1, 2, and 5 are defined in terms of original
counts yk as

y1k = (1 − f̂drk) · yk. (5.9)

Since 1− fdrk is the probability of being non-null for a case in the kth bin, y1k is, nearly, an
unbiased estimate of the number of non-null cases in bin k. We can use the thinned counts
to carry out sample size power calculations for large-scale studies.

Traditional sample size calculations employ preliminary data to predict how large an
experiment will be required for effective power. Here we might ask, for instance, if doubling
the number of subjects in the HIV study would substantially improve its detection rate. To
answer the question we assume a homoskedastic model for the z-values,

zi ∼ (µi, σ
2
0), (5.10)

the notation indicating that zi has expectation µi, its “true score” and variance σ2
0, with

µi = 0 for the null cases. Sections 6 and 7 discuss the rationale for (5.10).

We imagine that c independent replicates of (5.10) are available for each case, from
which a combined statistic z̃i is formed,

z̃i =
c∑

j=1

zij/
√

c ∼ (
√

c µi, σ
2
0) (5.11)

This definition maintains the distribution of the null cases, z̃i ∼ (0, σ2
0), while moving the

non-null true scores away from zero 1 by factor
√

c.

Consider a subset of the non-null cases in which the true scores have empirical mean
and variance say (a, b2). A randomly selected z statistic “Z” from this subset has marginal
mean and variance

Z ∼ (A,B2) = (a, b2 + σ2
0) (5.12)

according to (5.10), while the corresponding statistic “Z̃” from (5.11) has

Z̃ ∼ (Ã, B̃2) = (
√

c a, cb2 + σ2
0) (5.13)

Comparing (5.13) with (5.12) shows that the simple formula

Z̃ =
√

c A + d(Z − A), [d2 = c − (c − 1)σ2
0/B

2], (5.14)

gives Z̃ the correct mean and variance.

From the thinned counts (5.9) on the right side of Figure 5 we estimate

Â =

∑
z(k)y1k∑

y1k

= 2.23 and B̂ =

[∑
z2
(k)y1k∑
y1k

− Â2

] 1
2

= 0.87, 5.15)
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the sums being over z(k) > 0. Then (5.14), with σ0 = 0.735 from the empirical null, describes
how the right-side non-null zi’s might transform under increased sample sizes (5.11). A
similar calculation applies on the left, while the null scores, of which there are yk − y1k in
the kth bin, would remain unchanged.

Table 4 reports on Êfdr1, (5.6), for hypothetical transformed data sets having c =
1, 1.5, 2, and 2.5. We see that doubling the number of subjects, from 4 to 8 in each group,
would reduce Êfdr1 from 0.45 to 0.28, a substantial improvement. Table 3 involves a consid-
erable amount of speculation, more so than diagnostics (5.6)-(5.8), but power computations
are traditionally speculative; the calculations here, involving just means and variances, are
fashioned to minimize the amount of parametric modeling.

The dotted curve on the right side of Figure 5 is a cubic Poisson GLM fit directly to the
thinned counts y1k; that is, we assume

y1k
ind∼Po(ν1k), (5.16)

for log(ν1k) a cubic polynomial in the bin midpoints z(k), say

(log ν1k) = X1β, (5.17)

with X1 a K1 ×m1 structure matrix; K1 is the number of bins involved and m1 the number
of parameters, m1 = 4 here.

#Subjects 4-4 6-6 8-8 10-10

Êfdr1: 0.45 0.33 0.28 0.22

Table 4: Estimated values of Êfdr1, for expanded versions of HIV study; doubling the
study, to 8 subjects each in the two groups reduces Êfdr1 from 0.45 to 0.28.

The usual GLM estimate of covariance for β̂ is

Ĝ−1
1 = (X ′

1 diag (ν̂1k)X1)
−1. (5.18)

However this leads to an overestimate under model (3.1), because y1k = (1 − f̂drk)yk has
variance about (1 − fdrk)ν1k, less than the Poisson value ν1k assumed in (5.16). A more
accurate approximation is

Ĉov(β̂) = Ĝ−1
1 [X ′

1 diag ((1 − f̂drk)ν̂1k)X1)
−1Ĝ−1

1 , (5.19)

Estimating f̂1 directly from the thinned counts is appealing since it does not involve a
global fit to all N cases, as does (5.5), a fact we took advantage of in using only a cubic
model for the dotted curve. It did not make much difference to the HIV analysis though,
nor did simply replacing f̂1k with y1k in (5.6)-(5.8).
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6. The Non-Null Distribution of z-values

A key assumption of our fdr estimation methodology was the smooth nature of the z-
value mixture density f(z). This section discusses a useful approximation for the distribution
of z-values, null or non-null,

Z∼̇N(µ, σ2
µ), (6.1)

where Z represents a generic z-value, µ its expectation, “∼̇” indicates second order accu-
racy with distributional errors of order O(n−1) in the usual repeated sampling context, and

σµ =̇ 1 +O(n− 1
2 ). The smoothness assumption is justified by (6.1), which represents f(z) as

a well-controlled mixture of normal densities.

Figure 7 illustrates (6.1) for transformed t-statistics (1.1). We suppose that ti has a
noncentral t distribution, noncentrality θ and degrees of freedom ν,

ti ∼
θ + W

S1/2
[W ∼ N(0, τ) independent of s ∼ τx2

ν/ν]. (6.2)

Figure 7: Density of z-value (1.1) when ti is non-central t variate, 6 degrees of freedom;
non-centrality parameter θ = .5, 1.5, 2.5, 3.5, 4.5 left to right. Means 0.42, 1.35, 2.04, 2.56,
2.96; stdevs 0.98, 0.88, 0.75, 0.65, 0.58. Dotted curves are corresponding normal densities.

By definition zi ∼ N(0, 1) in the null case θ = 0. (For the calculations of this section
we are ignoring the failure of the theoretical null in Figure 4.) Figure 7 shows the density
of zi = Φ−1(F6(ti)) for θ = .5, 1.5, · · · , 4.5. We see σµ declining from 1 at θ = 0 to 0.58 at
θ = 4.5, while the normality claimed in (6.1) is nicely maintained.

Relationship (6.1) can be verified in a wide variety of situations. Suppose Z is based on

testing H0 : θ = 0 for a summary statistic θ̂ having cdf Fθ,

Z = Φ−1(F0(θ̂)). (6.3)
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We assume that θ̂ behaves asymptotically like a maximum likelihood estimate in terms of
a notional sample size “n”, its bias, standard deviation, skewness, and kurtosis having the
appropriate orders of magnitude,

θ̂ − θ ∼ (Bθ/n, Cθ/
√

n,Dθ/
√

n,Eθ/n); (6.4)

Bθ, Cθ, Dθ, and Eθ are smooth bounded functions of θ and n.

Following Sections 3-5 of Efron (1987), particularly Theorem 1, there exists a monotone

increasing transformation φ̂ = g(θ̂), φ = g(θ), 0 = g(0), such that

φ̂ ∼̇ φ + (1 + aφ)(W − z0), (6.5)

with W ∼ N(0, 1) and a and z0, the “acceleration” and “bias-correction” constants, each of

order O(n− 1
2 ). At θ = φ = 0 we have φ̂ ∼̇ N(−z0, 1), implying Z =̇ φ̂ + z0. Then (6.4) gives

Z ∼̇ φ(1 − az0) + (1 + aφ)W ∼̇ N(φ, (1 + aφ)2), (6.6)

(az0 = O(n−1) being ignorably small) verifying (6.1) with µ = φ and

σµ = 1 + aµ. (6.7)

The acceleration constant “a” determines how quickly σµ departs from σ0 = 1. Efron (1987)
derives approximation a = skew (�̇0)/6, in terms of the score function �̇0 at θ = 0.

As an example suppose we observe scaled one-sided exponential varieties,

y1, y2, . . . , yn
ind∼θG1 [Pr{G1 < x} = 1 − e−x], (6.8)

so that θ̂ = ȳ ∼ θ Gamman/n. For n = 10, and for any choice of the null hypothesis
H0 : θ = θ0, the score function approximation gives a = 1/(3

√
10) = .1054, while direct

numerical computation yielded

dσµ

dµ

∣∣∣∣∣
θ0

= .1049; (6.9)

σµ varied on the range [0.5, 1.5] for µ in ±5. The normal approximation is just as impressive
here as in Figure 7.

The gist of (6.1), (6.7) is that as µ departs from zero by amount O(1), σµ changes by

O(n− 1
2 ) while normality decays by only O(n−1). The student t example of Figure 7 is not

included in development (6.4)-(6.7), because of the nuisance parameter τ in (6.2), but in fact
showed even greater accuracy for (6.1). This can be verified using the diagnostic function in
Efron (1982).

Going further, we can consider the situation where Z is the z-value for a single parameter
in a multiparameter family. A promising conjecture is that (6.1), (6.7) holds in multiparam-
eter exponential families if z-values are obtained via the ABC method, DiCiccio and Efron
(1992). Section 4 of Efron (1988) discusses a variant of (6.1) applying to sequential sampling.
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Model (6.1) can be used to sharpen the sample size calculations of Section 5. Consider a
subset of cases, say the non-null cases on the right side of Figure 5, and let g(µ) represent the
empirical distribution of their true scores µi. Formulas (5.12)-(5.15) tacitly involve estimating

g(µ) : (Â, B̂2), the mean and variance of the thinned counts, give estimates (â, b̂2) for the
mean and variance of g(µ), (5.12), which depend on the homoskedastic model (5.10). Instead
we could begin with (6.1) and directly deconvolve the thinned counts to obtain ĝ(µ). Doing
so made little difference to Table 4. However ĝ(µ) can be useful in its own right, in particular
for estimating the Bayes posterior distribution of true score µi given zi.

7. Structure and Bias

Model (2.2) envisions two groups of cases, null and non-null. Realistic examples of large-
scale inference are apt to be less clearcut, with true effect sizes ranging smoothly from zero
or near zero to very large. Here we consider a “one-class” structural model that allows for
smooth effects. We can still usefully apply fdr methods to data from one-class models; doing
so helps clarify the choice between theoretical and empirical null hypothesis and explicates
the biases inherent in model (2.2).

For the theoretical developments of this section we consider a Bayesian structural model
where each true score µi is drawn randomly according to a prior density g(µ), with zi then
normally distributed around µi,

µ ∼ g(·) and z|µ ∼ N(µ, 1). (7.1)

(We could use N(µ, σ2
µ) as in (6.1), but at the expense of complicating the formulas that

follow.) The density g(µ) is allowed to have discrete atoms. It might have an atom at zero,
as in (4.1), but this is not required, and in any case there is no a priori partition of g(µ) into
null and non-null components.

Model (7.1) gives mixture density

f(z) =

∫ ∞

−∞
ϕ(µ − z)g(µ)dµ

[
ϕ(x) = e−

1
2
x2

/
√

2π
]
, (7.2)

with

f(0) =

∫ ∞

−∞
ϕ(µ)g(µ)dµ. (7.3)

The idea in what follows is to generalize the construction of Figure 4 by approximating
�(z) = log f(z) with Taylor series other than quadratic.

The Jth Taylor approximation to �(z) is

�J(z) =
J∑

j=0

�(j)(0)zj/j!, (7.4)

where �(0)(0) = log f(0) and for j ≥ 1

�(j)(0) =
dj log f(z)

dzj

∣∣∣
z=0

. (7.5)

22



The sub-density
f+

0 (z) = e�J (z) (7.6)

matches f(z) at z = 0 (a convenient use of the zero assumption) and leads to an fdr expression
as in (2.6),

fdr(z) = e�J (z)/f(z). (7.7)

Larger choices of J match f+
0 (z) more accurately to f(z), increasing ratio (7.7); the inter-

esting z-values, those with small fdr’s, are pushed farther away from zero as we allow more
of the data structure to be explained by the null density.

The Bayesian model (1.1) provides a helpful interpretation of the derivatives �(j)(0):

Lemma 2 The derivative �(j)(0), (7.5), is the jth cumulant of the posterior distribution
of µ given z = 0, except that �(2)(0) is the second cumulant minus 1. Thus

�(1)(0) = E0 and − �(2)(0) = V̄0, (7.8)

where E0 and V0 ≡ 1 − V̄0 are the posterior mean and variance of µ given z = 0.

Proof We have

�(z) = log
∫ ∞
−∞

e−
1
2 (µ−z)2

√
2π

g(µ)dµ

= −1
2
z2 + log f(0) + log

∫ ∞
−∞ ezµ[ϕ(µ)g(µ)/f(0)]dµ.

(7.9)

Notice that m(z) ≡
∫ ∞
−∞ ezµ[ϕ(µ)g(µ)/f(0)]dµ is the moment generating function of the

probability density ϕ(µ)g(µ)/f(0),

djm(z)

dzj
|z=0 =

∫ ∞

−∞
µj ϕ(µ)g(µ)

f(0)
dµ, (7.10)

the last expression also being the posterior jth moment of µ given z = 0. The usual
relationship between moments and cumlants, applied to the function �(z) + 1

2
z2 − log f(0),

verifies the Lemma.

For J = 0, 1, 2, formulas (7.7), (7.8) yield simple expressions for p0 and f0(z) in terms
of f(0), E0, and V̄0. These are summarized in Table 5 (with p0 obtained through definition
(2.4),

p0 =
[ ∫ ∞

−∞
f+

0 (z)dz
]−1

. ) (7.11)

Formulas are also available for Fdr(z), (2.8).

The choices J = 0, 1, 2 in Table 5 result in a normal null density f0(z), the only difference
being the means and variances. Going to J = 3 allows for an asymmetric choice of f0(z);
from (7.9) and the Lemma,

fdr(z) =
f(0)

f(z)
eE0z−V̄0z2/2+S0z3/6, (7.12)
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J : 0 1 2

p0: f(0)
√

2π f(0)
√

2π eE2
0/2 f(0)

√
2π
V̄0

eE2
0/2V̄0

f0(z): N(0, 1) N(E0, 1) N(E0/V̄0, 1/V̄0)

fdr(z): f(0)e−z2/2

f(z)
f(0)eE0z−z2/2

f(z)
f(0)eE0z−V̄0z2/2

f(z)

Table 5: Expressions for p0, f0 and fdr, first three choices of J in (7.6), (7.7); numerator
of fdr(z) is f+

0 (z). J = 0 gives theoretical null, J = 2 empirical null; f(z) from (7.2).

p0 δ σ p
(theo)
0 E0 V0

Model (7.13): 0.916 0.013 1.01 0.906 0.012 0.022
Model (7.14): 0.918 0.018 1.13 0.821 0.014 0.223

Table 6: p0 and f0(z) from Table 5; δ and σ mean and standard deviation of empirical
null, Top line Model (7.13), as used in simulation study; Bottom line Model (7.14).

where S0 is the posterior third central moment of µ given z = 0 in model (7.1). The
program locfdr uses a variant, the “split normal”, to model asymmetric null densities with
the exponent of (7.12) replaced by a quadratic spine in z.

Lemma 2 bears on the difference between empirical and theoretical nulls. Suppose that
the probability mass of g(µ) occurring within a few units of the origin is concentrated in an
atom at µ = 0. Then the posterior mean and variance (E0, V0) of µ given z = 0 will be near
0, making (E0, V̄0) =̇ (0, 1). In this case the empirical null (J = 2) will approximate the
theoretical null (J = 0). Otherwise the two nulls will differ; in particular, any mass of g(µ)

around zero increases V0, swelling the standard deviation (1 − V0)
− 1

2 of the empirical null.

Model (4.1), used for the simulation study, has

g(µ) = 0.9 · I0(µ) + 0.1 · ϕ3,1(µ), (7.13)

I0(µ) a unit atom at µ = 0, which gives mixture density f(z) = 0.9 · ϕ0,1(z) + 0.1 · ϕ3,
√

2(z)
according to (7.1). The top line of Table 6 shows p0 and f0(z) for (7.13), as calculated from
Table 5. This amounts to having N equal infinity in Table 2 (except for matching f+

0 (z) to
f(z) at z = 0 in (7.6) instead of averaging over the central third of f as in locfdr). We see
small biases away from f+

0 (z) = 0.9 ·ϕ0,1(z) : p0 exceeds 0.9, more so for the empirical null,
and (δ, σ) is slightly distorted from (0, 1).

Bias is more apparent in the left panel of Figure 8, which plots f1(z) = (1− fdr(z)) ·f(z)
as calculated from Table 5. The left tail of f1(z) is pushed away from zero compared to the
nominal f1 density ϕ3,

√
2(z), again more so for the empirical null. The zero assumption is

the culprit here, as mentioned before, since in fact ϕ0,1 and ϕ3,
√

2 overlap somewhat. The
empirical’s greater rightward shift, toward smaller fdr values, accounts for its smaller Efdr1

average in Table 3: computing Efdr1 =
∫

fdr(z) ·f1(z)dz according to Table 5 gives 0.245 for
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the empirical null and 0.288 for the theoretical, close to Table 3’s simulation values.

Figure 8: Non-null density f1(z) computed from Table 5, using empirical null (heavy curve)
or theoretical null (light curve); dots indicate nominal f1 density ϕ3,

√
2(z). Left panel model

(7.13); Right panel model (7.14).

“Bias” can be a misleading term in model (7.1) since it tacitly assumes that each µi is
clearly defined as either null or non-null. This seems clear enough in (7.13), where we took
the 0.90 atom at µ = 0 as null. Suppose though

g(µ) = 0.9 · ϕ0,.5(µ) + 0.1 · ϕ3,1(µ), (7.14)

which gives mixture density f(z) = 0.9 · ϕ0,1.12(z) + 0.1 · ϕ3,
√

2(z). This might characterize
an observational study, in which a crisp model like (7.13) has been blurred by uncontrolled
covariates that cause even the “null” cases to have slightly non-zero µi values; see Section 4
of Efron (2004). The null/non-null distinction is less obvious in (7.14), though it still makes
sense to apply model (2.2) to the search for cases that have µi far from 0.

The right panel of Figure 8 and the bottom line of Table 6 show the fdr analysis of Table
5 applied to model (7.14). The empirical null now estimates f0(z) as N(0.02, 1.132), closely
matching the N(0, 1.122) first component of f(z). This results in nearly the same estimates
of p0 and f1(z) as for (7.13). The fdr analysis of an actual data set z1, z2, . . . , zN arising
from (7.1) would identify nearly the same set of non-null cases for either (7.13) or (7.14).

Analysis based on the theoretical null changes drastically in (7.14). Twice as many
cases, some for zi < 0, are now identified as non-null, p1 = 0.179 instead of 0.094, with
the principal mode of f1(z) moved sharply towards z = 0. This example highlights the
difference in “significance” as judged be the theoretical and empirical nulls: simply put,
the empirical null judges significance in the extremes by the spread of the central zi’s,
while the theoretical null uses an absolute criterion. Every inference method, Fdr, FWER,
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permutation, Bonferroni, and not just fdr, yields doubtful results if model (7.14) is analyzed
in terms of the theoretical null.

Summary The local false discovery rate methodology developed in Sections 3 and 5 is
based on empirical Bayes analysis of the simple two-class model (2.2); fdr calculations pro-
vide both size and power estimates, while requiring a minimum of frequentist or Bayesian
modeling assumptions. The methodology applies to large-scale situations, with hundreds of
inference problems considered simultaneously, perhaps at least a thousand if the theoretical
null hypothesis is unsatisfactory. A closed form error analysis of fdr estimation, developed in
Section 4, is available when the inference problems are independent. Even when the two-class
model is dubious, as discussed in Section 7, fdr methods can still be informative, though now
they are more likely to require empirical estimation of the null hypothesis. All calculations
are carried through using standard Poisson GLM software; program locfdr is available from
the R library CRAN.
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